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Abstract. The running times of large-scale computational science and
engineering parallel applications, executed on clusters or Grid platforms,
are usually longer than the mean-time-between-failures (MTBF). There-
fore, hardware failures must be tolerated to ensure that not all computa-
tion done is lost on machine failures. Checkpointing and rollback recovery
are very useful techniques to implement fault-tolerant applications. Al-
though extensive research has been carried out in this field, there are few
available tools to help parallel programmers to enhance their applications
with fault tolerance support. This work presents an experience to endow
with fault tolerance two large MPI scientific applications: an air quality
simulation model and a crack growth analysis. A fault tolerant solution
has been implemented by means of a checkpointing and recovery tool, the
CPPC framework. Detailed experimental results are presented to show
the practical usefulness and low overhead of this checkpointing approach.
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1 Introduction

Checkpointing has become a widely used technique to provide fault tolerance by
periodically saving the computation state to stable storage, so that this state
can be restored in case of execution failure.

One of the most remarkable properties of general checkpointing techniques
is granularity. Checkpointing can be performed from two different granularity
levels: data segment level and variable level. On data segment level the entire
application state is saved (data segment, stack segment and execution context),
recovering it when necessary. Most of fault-tolerance tools present in the bib-
liography [1,2,3,4,5] perform data segment level checkpointing. This approach
presents a general advantage: its transparency from the user’s point of view,
since the application is seen as a black box. However, saving the application
state entirely leads to lack of portability, as a number of non-portable structures
will be saved along with application data (as application stack or heap).

A variable level approach saves only restart-relevant state to stable storage.
Many fault tolerant solutions implement variable level checkpointing by manu-
ally determining the data to be saved, and inserting code to save that data on
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disk and to restart the computation after failure. The code becomes as portable
as the original application and, provided that checkpoints are saved in a portable
format, the application can be restarted on different platforms. Unfortunately,
this method requires a data-flow analysis, which can be a tedious and error-prone
task to be performed by the user. Thus, a recent approach [6], developed by the
authors, tries to automatize a variable level checkpointing of message-passing
parallel applications by means of a checkpointing library and a compiler that
instruments MPI code.

The purpose of this work is to develop fault tolerant solutions for two different
computationally intensive MPI codes, an air quality model [7] and a crack growth
analysis [8]. A variable level checkpointing approach is followed, implemented
through the use of our checkpointing and recovery tool, CPPC.

The structure of this paper is as follows. Section 2 introduces the problem
of endowing parallel applications with fault tolerance, and gives an overview
of the CPPC tool and how it solves the major issues. Section 3 describes the
applications used for the tests. Experimental results about the use of the CPPC
tool are presented in Section 4. Finally, Section 5 concludes the paper.

2 Checkpointing and Recovery of Parallel Applications:
The CPPC Tool

There are several issues to be solved in implementing checkpointing solutions for
parallel applications, such as consistency, portability, memory requirements, or
transparency. CPPC is a checkpointing infrastructure that implements scalable,
efficient and portable checkpointing mechanisms. This section details various
aspects of CPPC’s design associated with major issues.

2.1 Global Consistency

Consistency is a key issue when dealing with the checkpoint of a parallel program
using the message-passing paradigm. The state of a parallel application is defined
as the set of all its processes states. There are two situations that require actions
to be performed in order to achieve a correct restart: existence of in-transit
messages (sent but not received), and existence of ghost messages (received but
not sent) in the set of processes states stored.

Checkpoint consistency has been well-studied in the last decade [9]. Ap-
proaches to the consistent recovery can be categorized into different protocols:
uncoordinated, coordinated and communication-induced checkpointing; and
message logging.

In uncoordinated checkpoint protocols the checkpoint of each process is exe-
cuted independently of the other processes, leading to the so called domino effect
(process may be forced to rollback up to the beginning of the execution). Thus,
these protocols are not used in practice. In coordinated checkpoint protocols,
all processes coordinate their checkpoints so that the global system state com-
posed of the set of all process checkpoints is coherent. Communication-induced
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checkpoint tries to take advantage of uncoordinated and coordinated checkpoint
techniques. Based on the uncoordinated approach, it detects risk of inconsistent
state, and forces processes to checkpoint. While this approach seems to be very
interesting theoretically, in practice it turns out to be quite inefficient.

Message logging saves messages with checkpoint files in order to replay them
for the recovery. The main disadvantage of log-based recovery is its high storage
overhead.

CPPC achieves global consistency by using spatial coordination, rather than
temporal coordination. Checkpoints are thus taken at the same relative code
points by all the processes (assuming SPMD codes). To avoid problems caused
by messages between processes, checkpoint directives must be inserted at points
where it is guaranteed that there are no in-transit, nor ghost messages. These
points are called safe points. For an automatic identification of safe points, a
static analysis of interprocess message flow is needed. This automatization is
currently under development.

2.2 Portability

The availability of the application to be executed across multiple platforms plays
an important role in current trends towards new computing infrastructures, such
as heterogeneous clusters and Grid systems.

A state file is said to be portable if it can be used to restart the computation
on an architecture (or OS) different from that where the file was generated on.
This means that state files should not contain hard machine-dependent state,
which should be recovered at restart time using special protocols.

The solution used in CPPC is to recover non-portable state by means of the
re-execution of the code responsible for creating such opaque state in the original
execution. Hence, the new code will be just as portable as the original code was.
Moreover, in CPPC the effective data writing will be performed by a selected
writing plugin implementation, using its own format. This enables the restart on
different architectures, as long as a portable dumping format is used for program
variables. Currently, a writing plugin based on HDF5 is provided. HDF5 [10] is
a general purpose library and file format for storing scientific data in a portable
way. The CPPC HDF5 plugin allows the generated checkpoint files to be used
across multiple platforms. CPPC-generated HDF5 files are much like binary files,
except that all data are tagged to make conversions possible when restarting on
different platforms.

2.3 Memory Requirements

The solution of large large scientific problems may need the use of massive com-
putational resources, both in terms of CPU effort and memory requirements.
Thus, many scientific applications are developed to be run on a large number of
processors. The checkpointing of this kind of applications would lead to a great
amount of stored state, the cost being so high as to become impractical.
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CPPC reduces the amount of data to be saved by including in its compiler
a live variable analysis in order to identify those variable values that are only
needed upon restart. Besides, the HDF5 library can accommodate data in a
variety of ways, including a compressed format based on the ZLib library [11].
This, or other compression algorithms, can be included in a writing plugin with-
out recompiling the CPPC library. A multithreaded dumping option [12] is also
provided by the CPPC tool to improve performance when working with large
datasets. A new thread handles checkpoint file creation while the application
continues normal execution.

2.4 Transparency

This property is measured in terms of user effort to insert checkpoint support into
the application. On the one hand, data segment level approaches are completely
transparent to programmers, as they do not need much information about the
applications being treated. On the other hand, variable level strategies have to
get some metadata about the application in order to operate correctly, and they
usually get it from the programmer.

The CPPC tool appears to the user as a compiler tool and a runtime library
which help achieve the goal of inserting fault tolerance into a parallel appli-
cation in an almost transparent way. The library provides checkpoint-support
routines, and the compiler tool seeks to automatize the use of the library. The
user must insert only one compiler directive into the original application (the
cppc checkpoint pragma) to mark points in the code where the relevant state
will be dumped to stable storage in a checkpoint file. The compiler performs a
source-to-source transformation, automatically identifying both the variables to
be dumped to the checkpoint file and the non-portable code to be re-executed
upon restart; and it also inserts the necessary calls to functions of the CPPC
library, as well as flow control code needed to recover the non-portable state.

3 The Applications

In this section, two large-scale scientific applications are described: an air quality
model and a crack growth simulation. Both applications were found to be good
candidates for using the CPPC tool. Originally, none of them provided fault-
tolerance. However, being long running critical applications, both would benefit
from this feature.

The STEM-II Model. Due to the increasing sources of air pollutants, the
development of tools to control and prevent the pollutants’ accumulation has
become a high priority. Coal-fired electrical power plants constitute one of the
most significant sources of air pollutants, thus its study is a key issue in pollution
control specifications. The STEM-II model [13] is used to know in advance how
the meteorological conditions, obtained from a meteorological prediction model,
would affect the emissions of pollutants by the power plant of As Pontes (A
Coruña, Spain) in order to fulfill EU regulations.
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Air quality models can be mathematically described as time-dependent, 3D
partial differential equations. The underlying equation used is the atmospheric-
diffusion equation. The numerical solution of this equation consists of the integra-
tion of a system of coupled non-linear ordinary differential equations. STEM-II
solves this system using a finite element method (FEM).

The sequential program consists mainly of four nested loops, a temporal loop
(loop t) and a loop for each dimension of the simulated space (loop x, loop y
and loop z). The main modules of the code are: horizontal transport, vertical
transport and chemical reactions, and I/O module. The model requires as input
data the initial pollutant concentrations, topological data, emissions from the
power plant and meteorological data. The initial pollutant concentrations and
topological data are read only once, at the beginning of the simulation. The
meteorological data and the emissions from the power plant are time-dependent
and must be read each 60 iterations, that is, each new hour of simulation. The
output consists of spatially and temporally gaseous and aqueous concentrations
of each modeled specie, reaction rates, in and out fluxes, amount deposited and
ionic concentrations of hydrometeor particles. As this model is computationally
intensive, it has been parallelized using MPI [7].

Crack Growth Analysis Using Dual BEM (DBEM). Cracks are present
in all structures, usually as a result of localised damage in service, and may grow
by processes such as fatigue, stress-corrosion or creep. The growth of the crack
leads to a decrease in the structural strength. Thus, fracture occurs, leading to
the failure of the structure.

The Boundary Element Method (BEM) has been acknowledged as an alterna-
tive to FEM in fracture mechanic analysis. BEM reduces the dimensionality of
the problem under analysis through the discretization of the boundary domain
only.

Despite the reduction of dimensionality using BEMs instead of FEMs, the
crack growth analysis leads to a large number of discretized equations that grow
at every step when the crack growth is evaluated. Analysis of real structural
integrity problems may need the use of large computational resources, both in
terms of CPU and memory requirements.

The boundary element code to assemble the linear equations is essentially a
triple-nested DO loop. The external loop is over the collocation nodes, the middle
loop is over the boundary elements, and the internal loop is over the Gauss
points. Coarse grain parallelization can be achieved by distributing collocation
nodes among processors [8].

Although assembling the linear equations is a key task in the simulation pro-
cess, the bottleneck of the crack growth analysis is the solution of the resultant
dense linear system. The traditional method for the solution of a dense linear
system would be the application of the Gauss elimination method. However, as
the problem size increases the use of iterative methods is demanded. This ap-
plication uses the GMRES iterative method, regarded as the most robust of the
Krylov subspace iterative methods.
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Table 1. Applications’ summary

running on 4 nodes
Tested Programming Number of Lines of Memory Disk

application Language files Code requirements quota
STEM F77 149 9609 180MB 560MB
DBEM F77 45 13164 370MB 170MB

4 Experimental Results

In this section, the results of applying the CPPC tool to the large-scale appli-
cations described in the previous section are presented. Results include check-
pointing overhead, restart overhead, portability and checkpoint file size. Tests
were performed on a cluster of Intel Xeon 1.8 Ghz nodes, 1GB RAM, connected
through an SCI network.

Table 1 summarizes the two tested applications: the air quality simulation
model (from now on referred to as STEM) and the crack growth simulation
(DBEM).

CPPC treats the applications as black boxes, and automates the insertion of
checkpoint-support routines provided by the CPPC library, identifying the vari-
ables to be dumped and the non-portable code to be re-executed upon restart,
and inserting flow control code. The cppc checkpoint is the only directive not
yet automated, and thus the programmer must find a safe point in the origi-
nal code for the checkpointing file dumping. Safe points can be easily found in
both codes, since they follow the SPMD paradigm. This point has been found
at the end of the outer loop (loop t) in the STEM code. In these experiments it
executes 1440 iterations of the outer loop, which corresponds to 24 hours of real-
time simulation. In the DBEM code, the checkpoint directive has been placed
at the beginning of the main loop in the GMRES solver. In these experiments
DBEM performs a crack growth simulation on a mesh of 496 collocation nodes,
which involves the solution of a dense linear system of 1494 equations.

Figure 1 shows the execution times for both applications. Results are shown
for the original execution, execution with CPPC checkpointing instrumentation,
and two executions including different checkpoint frequencies. CPPC instrumen-
tation includes calls to CPPC library routines, such as CPPC initialization or
variable registration routines, and flow control code. As can be seen in the figure,
the overhead introduced by the CPPC instrumentation remains under 5% for
both applications.

The overhead of a single checkpoint file dumping depends on the amount
of data to be stored and the format used for the data storage. Results shown
in Figure 1 were obtained using HDF5 format. Early tests were carried out
with one checkpoint file dumping each 60 iterations (labeled as “1/60” in the
figure). Then, more tests were performed increasing the checkpoint frequency
up to one checkpoint each ten iterations (labeled as “1/10”). Increasing the
checkpoint frequency did not noticeably vary the total execution time, since
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Fig. 1. Execution times in failure-free tests

once the instrumentation overhead is introduced, the multithreaded technique
hides the overhead of the data dumping step.

These results have been obtained assuming no failures during the execution.
In other case, the restart time should be also considered in the total execution
time. Restart overhead is less important than checkpointing overhead. The ap-
plication is expected to be restarted only in case of failure and, in long running
applications, it will be always better than to re-execute the application from the
beginning. Results for restart execution times can be seen in Figure 2. The total
restart time is divided in two sections: overhead due to the checkpoint file read
and overhead due to state recovery. Results labeled as “native” correspond to
those obtained when restarting an application from checkpoint files generated in
the same platform. In order to perform also a portability test, these applications
were executed on an HP Superdome located at the Galician Supercomputing
Center (Intel Itanium 2 nodes at 1.5Ghz, 3GB RAM, connected through Infini-
band) with its proprietary Fortran compiler and MPI implementation. Check-
point files created in this platform were used to restart the applications on the
SCI cluster, thus allowing the comparison of restart times using both native
and imported files (native and cross-platform results, respectively, in Figure 2).
Reading time increases if data transformations are needed, since they will take
place at application restart. Results have shown that the overhead introduced is
low enough to be negligible, even in the cross-platform case.

As pointed out in Section 2, when dealing with large-scale applications, check-
pointing could lead to a great amount of state stored. Hence, techniques to reduce
the checkpoint file size are of capital importance. Table 2 compares CPPC gener-
ated file sizes to those obtained using a segment level approach. As can be seen,
CPPC achieves very important size reductions by performing a live variable anal-
ysis (the number of live variables registered by CPPC are shown in the table).
Table 2 also shows chekpoint file generation time (dumping time) when using
the CPPC tool. Results of dumping time with and without the multithreading
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Fig. 2. Restart overhead

Table 2. Checkpoint file generation results

Segment level CPPC
Tested ckpt-file ckpt-file registered dumping time (s)

application size size variables absolute multithread
STEM 187 MB 121 MB 156 0.42 0.18
DBEM 290 MB 145 MB 178 0.91 0.52

option demonstrate that the checkpoint file generation has a minimal influence
on the performance of long running applications.

5 Conclusions

Currently, there are several solutions available that deal with checkpointing of
parallel applications. However, most of them implement data segment level ap-
proaches, which present serious drawbacks for real scientific applications, such as
memory requirements or portability. Thus, development of new tools to provide
variable level solutions with a high level of transparency from the user’s point
of view becomes a great challenge.

In this paper a variable level checkpointing tool, CPPC, has been tested with
two large-scale scientific applications. CPPC resolves major issues in implement-
ing scalable, efficient and portable checkpointing by using a variable level, non-
coordinated, non-logging, portable approach. Experimental results have demon-
strated the efficacy of this approach, in terms of execution times, checkpointing
overhead, memory requirements, portability and usability.

CPPC version 0.5 can be downloaded at http://cppc.des.udc.es.
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