
CPPC: A compiler–assisted tool for portable checkpointing
of message-passing applications

Gabriel Rodrı́guez, Marı́a J. Martı́n, Patricia González, Juan Touriño,
Ramón Doallo

Computer Architecture Group, Department of Electronics and Systems
University of A Coruña, Spain

{grodriguez,mariam,pglez,juan,doallo}@udc.es

Abstract

With the evolution of high-performance computing towards heterogeneous, massively par-
allel systems, parallel applications have developed new fault tolerance necessities. Check-
pointing has become a widely used technique to obtain fault tolerance. Whether due to a
failure in the execution or to a migration of the processes to different machines, checkpoint-
ing tools must be able to operate in heterogeneous environments. Portable checkpointers
usually work around portability issues at the cost of transparency: the user must provide in-
formation as what data needs to be stored, where to store it, or where to checkpoint. CPPC
(Controller/Precompiler for Portable Checkpointing) is a checkpointing tool designed to fea-
ture both portability and transparency. It is made up of a library containing checkpointing
routines and a compiler which automates the use of the library. This paper gives an overview
of the CPPC tool. Experimental results using benchmarks and large-scale real applications
are included, demonstrating usability, efficiency and portability.

1 Introduction

Current trends towards new computing infrastructures, such as large heterogeneous clusters and
Grid systems, present new constraints for checkpointing techniques. Heterogeneity makes it
impossible to apply traditional state saving techniques, which use non-portable strategies for re-
covering structures such as application stack, heap, or communication state. Modern checkpoint-
ing techniques need to provide strategies for portable state recovery, where the computation can
be resumed on a wide range of machines, from binary incompatible architectures to incompatible
versions of software facilities, such as different implementations for communication interfaces.
Most approaches [1, 2, 10, 15] perform data segment level checkpointing, that is, they store the
entire application state. This leads to a lack of portability, as a number of non-portable structures
will be saved along with application data (as application stack or heap).
This paper presents CPPC, a checkpointing framework focused on the automatic insertion of fault
tolerance into long-running message-passing applications. It is designed to allow for execution
restart on different architectures and/or operating systems, also supporting checkpointing over



heterogeneous systems, such as the Grid. It uses portable code and protocols, and generates
portable checkpoint files while avoiding traditional solutions (such as process coordination [3,17]
or message-logging [2]) which add an unscalable overhead.
The structure of the paper is as follows. Section 2 describes CPPC’s design and the CPPC Library.
Section 3 is devoted to the description of the CPPC Compiler. Section 4 presents experimental
results. Finally, Section 5 concludes the paper with the main features and contributions of the tool.

2 The CPPC Framework

As stated in the previous section, current fault tolerance trends require portable tools for message-
passing applications, focusing on providing the following fundamental features:

1. OS-independence: checkpointing strategies must be compatible with any given operating
system. This means having at least a basic modular structure to allow for substitution of
certain critical sections of code (e.g. filesystem access) depending on the underlying OS.

2. Support for parallel applications with communication protocol independence: the check-
pointing framework should not make any assumption as to the communication interface or
implementation being used. Large-scale machines in computational Grids belong to inde-
pendent entities which cannot be forced to provide a certain version of the MPI interface.
Even recognizing the role of MPI as the message-passing de-facto standard, the check-
pointing technique cannot be theoretically tied to MPI in order to provide a truly portable,
reusable approach.

3. Reduced checkpoint file sizes: the tool should optimize the amount of data being saved,
avoiding dumping state which will not be necessary upon application restart. This improves
performance, which depends heavily on state file sizes. It also enhances the performance of
application migration between massively parallel systems in case of failure.

4. Portable data recovery: the state of an application can be seen as a structure containing
different types of data. The checkpointing tool must be able to recover all these data in a
portable way. This includes the recovery of opaque state, such as MPI communicators, as
well as of OS-dependent state, such as the file table or the execution stack.

The CPPC framework provides all these features which are key issues for fault-tolerance support
on heterogeneous large-scale systems. It appears to the user as a runtime library containing
checkpoint-support routines, together with a compiler which automates the use of the library.
A preliminary version of the CPPC Library was presented in [16].
In order to flexibly support different host languages, library routines such as variable registration,
state dumping, etc. are implemented through delegation into a controller. Interfaces masking
programming language features, such as static/dynamic memory management or variable typing
are provided to decouple both the application code and the checkpoint system. Currently supported
languages are C and Fortran 77.



From the structural point of view, the controller consists of three basic layers: a facade, that keeps
track of the state to be stored when the next checkpoint is reached; a checkpointing layer, which
gathers, manages and puts together all data to be stored into the state files; and a writing layer
which decouples the other two layers from the specific file format used for state file storage.
CPPC has two operation modes: checkpoint operation and restart operation. Checkpoint operation
mode is active when a normal execution is being run. It basically consists of marking relevant
variables for dumping at next checkpoint (variable registration) and dumping state files at the
specified locations in the code. Restart operation mode emerges when the application must be
restarted from a previously saved checkpoint file. Both portable and non-portable state have to be
recovered. Also, when working with parallel applications it must be ensured that all processes are
restarted in a consistent global state: no coordination problems may arise at restart time.
The following subsections address the techniques used by CPPC for solving the aforementioned
issues.

2.1 Checkpoint file dumping

From the point of view of the data stored in state files, checkpointers can work at segment level,
storing the whole application state, or at variable level, storing user variables only. CPPC works
at variable level, that is, it stores only those variables which are needed upon application restart.
When the execution flow reaches a checkpoint, data to be stored are structured and passed to
the writing layer. This includes both static and dynamic data. The actual data writing will be
performed by the selected writing plugin. This enables the restart on different architectures, as
long as a portable format is used to store the data.
The CPPC framework includes an HDF-5-based [13] writing plugin. HDF-5 is a general purpose
library and file format for portably storing scientific data. It supports recovery on binary incom-
patible machines and/or different operating systems. The CPPC Library design allows for the
implementation of new writing plugins that can be attached to the Library without recompiling it.
The state file format used keeps track of function calls performed by the application, allowing for
its state to be rebuilt by recreating the sequence of procedure calls made by the original execution.
Any pattern in procedure calling may be represented, including recursive calls. The use of portable
offsets instead of memory addresses [18] for data representation enables pointer portability, pre-
serving aliasing relationships.
CPPC provides checkpointing options such as multithreaded dumping. If multithreading is active,
a checkpoint will first calculate aliasing relationships between variables to be stored, and offsets
for each register into a memory block. Then, memory blocks to be stored are copied over to ensure
that the checkpointing will work over a clean, unmodified copy. After this process is complete, a
new thread is created to handle checkpointing using copied blocks, while the application resumes
its execution using the original data. This avoids the overhead caused by waiting for checkpoint
files to be written to disk.
If a failure occurred in the checkpointing thread, inconsistent checkpoint files would be created.
CPPC generates a CRC-32 for the checkpoint file. This CRC-32 is checked upon restart to ensure
file correctness.



CPPC also supports file compression. A scheme based on the ZLib library [6] has been developed,
but other algorithms can be included. File compression does not only help save disk space and
network transfers (if needed), but can also improve performance when working with large datasets
with high compression rates.

2.2 Global consistency

When checkpointing parallel applications, special considerations regarding message-passing have
to be taken to ensure that the coordination implicitly established by the communication flow be-
tween processes is not lost when restarting the application. If a checkpoint is placed in the code
between two matching communication statements, an inconsistency would occur when restarting
the application, since the first one will not be executed. If it is a send statement, the message will
not be resent and becomes an in-transit message. If it is a receive statement, the message will not
be received, becoming a ghost message.
A global checkpoint is said to be transitless if there are no in-transit messages when it is cre-
ated [4]. It is called consistent if there are no ghost messages [8]. Traditional approaches use
some kind of process coordination to ensure consistency, and message-logging techniques to solve
issues generated by in-transit messages. As stated in [5], the main drawback of coordinated check-
pointing is potential lack of scalability, since it may force all processes to take a checkpoint con-
currently; the drawback of message-logging is lack of efficiency derived from the overhead of log
requirements. CPPC avoids these issues by focusing on SPMD parallel applications and using a
spatially coordinated approach. Checkpoints are taken at the same relative code locations by all
processes, without performing interprocess communications or runtime synchronization. To avoid
problems caused by messages between processes, checkpoints must be inserted at points where
it is guaranteed that there are no in-transit, nor ghost messages. These points will be called safe
points. Safe point identification and checkpoint insertion is automatically performed by the com-
piler. Generated checkpoints are transitless and consistent, both being conditions for a checkpoint
to be called strongly consistent [8].
This protocol achieves to improve efficiency and scalability by transferring consistency concerns
from runtime to both compile and restart time: at compile time, safe points are detected, and at
restart time a negotiation is performed to achieve an agreement about the checkpoint files to be
used for application restart. Both compiling and restarting an application are expected to be far
less frequent operations than checkpoint file generation.

2.3 Restart protocol

When restarting an application, not only user variables must be recovered, but also non-portable
state created in the original execution, such as MPI communicators, virtual topologies, or derived
data types. However, CPPC only stores portable data into state files. This introduces the need
for a restart protocol to regenerate the original state that has not been stored. CPPC uses code re-
execution to achieve complete application state recovery. Through code re-execution, non-portable
state is recovered by the same means used originally to create it. Therefore, a CPPC application is
just as portable as the original one: variables are saved in a portable manner, non-portable state is



recreated using the original code.
A piece of application code is defined as Required-Execution Code (REC) if it must be re-executed
at restart time to ensure correct state recreation. The recovery process consists of the ordered
re-execution of such blocks of code. Examples of RECs are the call to the CPPC initialization
function; the execution of variable registration calls, responsible for recovering variable values
when restarting; or the execution of procedures with non-portable outcome. REC detection is
completely automated by the CPPC compiler.
CPPC controls execution flow when restarting an application, making it jump from the end of
one REC to the beginning of the next one, and skipping non-relevant code. The result is an
ordered execution of state-recovering statements which, eventually, creates a replica of the original
application state. Once all state has been recovered and the checkpoint statement where the state
file used for recovery was created is reached, the execution changes to checkpoint mode and
proceeds normally.

3 CPPC Compiler

The CPPC Compiler is built on the Cetus compiler infrastructure [9]. It is written in Java, which
makes its code inherently portable. Although Cetus was originally designed to support C codes,
we have extended it to allow for parsing Fortran 77 codes. It uses the same basic intermediate rep-
resentation language (IRL) for both C and Fortran codes, hence allowing the same transformation
code to be applied to applications written in both languages.
Some transformations performed by the compiler require knowledge about which specific proce-
dures implement certain semantics (e.g. which procedure initializes the parallel system). We call
these transformations semantic-directed. Descriptive files included in the CPPC distribution are
used for supplying such knowledge. Each of these files is called a semantic module, and contains
information about a set of related procedures (e.g. MPI functions). It marks functions as imple-
mentors of certain roles (e.g. a sender function) and also contains information on how the role is
implemented (e.g. which parameter of the send function specifies the recipient’s rank, and which
one specifies the message tag). This information will be used by the compiler when applying
semantic-directed transformations (e.g. communication matching).
Besides semantic information, these modules also contain data flow information. Function param-
eters are categorized as input, output, or input-output, which gives details about the outcome, in
terms of data flow, of a call to a certain procedure. This prevents data flow analyses from having
to use conservative approaches when analyzing calls to procedures in external libraries, which
usually involve executing code not accessible at compile time.
The use of semantic modules enables transformations to work with different programming inter-
faces for a given subsystem: extensions to other communication or file I/O interfaces would only
require the creation of the corresponding descriptive semantic module. This makes the CPPC
Compiler a portable, versatile and easily extensible tool. Note that semantic modules are not
intended to be written by CPPC users, but provided along with the tool.
The most important analyses and transformations performed by the compiler are covered in the
following subsections.



3.1 Detection of procedures with non-portable outcome

Information about procedures which need to be re-executed when restarting an application is in-
cluded in the semantic modules supplied to the compiler. Upon discovery of a non-portable call,
the CPPC Compiler adds instrumentation code which ensures that the call will be made with ex-
actly the same parameter values as the original one. Moreover, the application stack of the original
execution is also reconstructed, guaranteeing that all generated non-portable state belongs to its
proper scope.

3.2 Checkpoint insertion

In order to discover good locations for checkpointing, the compiler performs two analyses. The
first one finds safe points in the code by matching communications. It performs constant propaga-
tion and symbolic expression analysis to identify literal values for variables used as source, desti-
nation, and tags in communication statements. These are called communication relevant variables.
Then it uses this information to match communications in an interprocedural way. In order to op-
timize the process, constant propagation and symbolic expression analysis are only performed for
statements which modify communication relevant variables.
The second analysis identifies the most computationally expensive loops and chooses safe points
inside them for inserting checkpoints. Also, checkpoints are placed at strategic locations in which
the amount of live variables is at a local minimum, minimizing the size of the state file as well.

3.3 Registration of restart-relevant variables

In order to identify the variables needed upon application restart, the compiler performs a live
variable analysis. This is a somehow complementary approach to memory exclusion techniques
used in sequential checkpointers to reduce the amount of memory stored, such as the one proposed
in [14]. Before each checkpoint statement ci, the compiler inserts register functions to mark the
variables that must be stored in the checkpoint file, which are those contained in the set of live
variables before ci, LVin(ci). The data type for the register is determined by checking the variable
definition. Variables registered or defined at previous checkpoints are not registered again. Also,
before each checkpoint ci, the compiler inserts unregistration calls for the variables in the set
LVin(ci−1)− LVin(ci), which contains variables that are no longer relevant.
The compiler does not currently perform optimal bounds checks for pointer and array variables.
This means that some arrays and pointers are registered in a conservative way: they are entirely
stored if they are used at any point in the re-executed code.
When dealing with calls to precompiled procedures located in external libraries, the default be-
havior is to assume all parameters to be of input type, therefore registering them all. To avoid
this default behavior, the CPPC Compiler uses the data flow information available in semantic
modules.



Table 1: Test applications
Files LOCs Description Compile time (s) Registers

N
PB

BT (class=B) 23 4066 Block Tridiagonal 34.58 193
LU (class=B) 29 3509 LU Symmetric Gauss-Seidel 21.48 89
CG (class=C) 1 1044 Conjugate Gradient 6.92 37
MG (class=B) 2 1618 MultiGrid 15.50 34
IS (class=B) 1 671 Integer Sort 7.36 28

R
ea

l DBEM 45 13130 Crack Growth Simulation 51.28 180
STEM-II 141 7524 Air Quality Simulation 31.46 156

4 Experimental results

For testing purposes, a twofold approach has been selected. First, five applications contained in the
NAS Parallel Benchmarks (NPB) [12] have been used. These applications have short execution
times (below 11 minutes), so they are not appealing options for applying checkpointing techniques
in practice. For this reason, a crack growth simulation code (named DBEM) [7], as well as an air
quality simulation application (named STEM-II) [11], have also been tested. A summary of these
applications, along with their sizes in terms of number of files and lines of code (LOCs), the time
needed by the CPPC Compiler to instrument them, and the number of variables automatically
registered, can be seen in Table 1. Note that there are more than a hundred relevant variables
for the large-scale applications, making the automatization of the variable detection and register
insertion critical for the usability of the tool.
Tests were performed on a cluster of Intel Xeon 1.8 Ghz nodes, 1 GB of RAM, connected through
an SCI network. Size of generated state files, time for state file generation, checkpoint overhead
and restart times were measured. For demonstrating portability, these applications were also run
on an HP Superdome (Intel Itanium 2 at 1.5 Ghz, 3 GB of RAM, connected through Infiniband)
with proprietary C/Fortran compilers and also proprietary MPI implementation. Checkpoint files
created in the Superdome were used to restart the applications on the cluster, which allowed for
comparing restart times using both native and imported files.
In order to perform a complete evaluation of the tool, it would be desirable to compare these results
against others obtained using similar tools. This is not feasible, since there are no such tools in
the public domain that we can use in our execution environment. However, some qualitative
comparisons are outlined according to experimental results in the literature.

4.1 State file sizes

When using spatially coordinated, non-logging checkpointing techniques, the incurred overhead
will only depend on the overhead introduced by the checkpoint file dumping. This overhead
heavily depends on the size of the data to be dumped. Thus, the first parameter to be measured
is how the variable level approach affects checkpoint file sizes. Results for the test applications
are shown in Fig. 1(a). The values tagged as “HDF-5 automatic” are file sizes obtained by the
automatic analyses included in the compiler. “HDF-5 optimal” shows the optimal sizes, obtained



BT LU CG MG IS DBEM STEM-II
0

50

100

150

200

250

300

350
HDF-5 optimal
HDF-5 
automatic
HDF-5 Zlib
Full data

Si
ze

 (M
B)

(a) Generated file sizes per process

BT LU CG MG IS DBEM STEM-II
0

2

4

6

8

10

12

14
Standard
CRC-32
Zlib

Ti
m

e 
(s

)

(b) File generation overhead

Figure 1: File sizes and generation overhead

by a manual analysis. The HDF-5 writer can, optionally, compress data using a ZLib plugin. The
“HDF-5 Zlib” results have been generated using the automatic variable registration. Sizes obtained
for a checkpointer that stores all the application data are included for comparison purposes, and
tagged as “Full data”. Most checkpointers in the literature belong to this last category. Others use
incremental checkpointing, which achieves results roughly similar to the optimal ones shown in
the figure. In the future, we plan to include incremental checkpointing on top of the live variable
analysis in order to further reduce file sizes.
Sizes obtained using automatic analyses are very close to the optimal ones, except for BT and IS
applications. This is due to the fact that unnecessary array sections are registered because of the
conservative approach of the compiler, as explained in Section 3. As can be seen, variable level
checkpointing achieves very important size reductions for some applications when compared to
full data sizes, like in CG where this reduction reaches a 57.26%. For the large-scale applications
the reduction is of 51.54% for DBEM, and 39.03% for STEM-II.
The high compression rates obtained for DBEM and STEM-II (96.2% and 85.92%, respectively)
are due to the fact that these applications statically allocate arrays which are oversized to fit a
maximum problem size. As a result, an important amount of empty memory is allocated, which
results in high compression rates.

4.2 State file creation time

The performance obtained by CPPC is tightly tied to the size of the generated files. The other
factor that plays a key role in dumping time is the writing strategy used, as shown in Fig. 1(b).
Times were taken for a standard HDF-5 file creation, for the same HDF-5 file including an error
detection scheme (CRC-32), and for the HDF-5 file using ZLib compression. Note that these times
correspond to the raw dumping of a single checkpoint, not the real contribution of dumping times
to the checkpoint overhead, which can be reduced by using multithreaded dumping.



Table 2: Multithreaded checkpoint overheads
Original runtime Checkpoint overhead (#checkpoints) Overhead percentage

N
PB

BT 638.37 s 2.70 s (1) 0.42%
LU 467.08 s 4.70 s (1) 1.01%
CG 617.28 s 7.27 s (1) 1.18%
MG 21.47 s 2.05 s (1) 9.55%
IS 5.72 s 1.50 s (1) 26.22%

R
ea

l DBEM 80473.13 s 256.02 s (23) 0.31%
STEM-II 21622.41 s 101.14 s (7) 0.47%

Written data are tagged by the HDF-5 library to allow for conversions, if needed, when restarting
the application. This improves checkpoint mode performance, moving conversion overhead to the
restart mode, which is a much less frequent operation.
Using compression heavily increases overall dumping time. Therefore, it should be enabled only
when the physical size of the state files is critical; e.g. if there are problems with disk quotas or
when the files are going to be transferred using a slow network.

4.3 Checkpoint overhead

To reduce the overhead introduced by file generation, multithreaded state dumping has been
implemented. Table 2 details the original execution times and the overhead introduced by check-
pointing. One state file was generated for the NPB benchmarks, while checkpointing frequency
was manually adjusted to create approximately one per hour for DBEM and STEM-II. Files were
generated using the HDF-5 writer, with the automatic registration process and the standard writ-
ing strategy. Note that checkpoint overhead includes, besides file generation, the remaining CPPC
operations: initialization, register management, context tracing and finalization. Increasing the
checkpointing frequency up to one checkpoint each ten minutes for the large-scale applications
did not noticeably vary total execution times, being additional overheads obtained less than 0.01%.
Once the instrumentation overhead is introduced, the multithreaded technique is able to absorb the
overhead of the data dumping step.
As can be seen, MG and IS have such a short execution time that checkpoint overhead is relatively
high (although this overhead is in the range of only seconds). However, those applications with
higher runtimes present very low overheads: only 0.31% and 0.47% for DBEM and STEM-II,
with runtimes of more than 22 and 6 hours, respectively.
Approaches that solve consistency issues by means of message-logging or process coordination
usually present an instrumentation overhead higher than the total overhead incurred by CPPC.

4.4 Restart overhead

If a failure occurs, restart time overhead must be taken into account in the global execution time.
Restart times for the applications have been measured and split into its two fundamental phases:



BT LU CG MG IS DBEM STEM-II
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8
Recovery
Read

Ti
m

e 
(s

)

(a) Restart times using HDF-5 files

BT LU CG MG IS DBEM STEM-II
0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6
Cluster file
Superdome file

Ti
m

e 
(s

)

(b) Comparison of file read times

Figure 2: Restart times for test applications

file read and effective data recovery. Results are depicted in Fig. 2(a). As can be seen, restart times
are low (less than one second).
File read time measurement comprises all steps taken until the checkpoint data are loaded into
memory and made available for the application to recover them. This process includes identifi-
cation of the writing plugin to be used, file opening and data reading. Times obtained depend on
both file size and whether or not data transformations are needed. This effect is shown in Fig. 2(b),
which details file read times for both cluster- and Superdome-generated files when restarting the
test applications on the cluster. This test also serves to demonstrate portability.
Recovery time begins when the file read ends, and stops when CPPC determines that the restart
process has ended, switching to checkpoint operation mode. This happens when all state is
recovered and the execution flow reaches the checkpoint statement where the file was originally
generated. This time depends on the amount of state saved and the amount of state recovered using
code re-execution.

5 Concluding remarks

CPPC is a portable checkpointing infrastructure for parallel applications. It uses a variable level,
non-logging, modular approach to achieve scalability, efficiency and portability. The analyses and
transformations performed by the compiler completely automate the instrumentation process. The
live variable analysis, which would be a hard task for the user, shows potential for a significant
reduction of checkpoint file sizes. The two most remarkable contributions of this framework
address consistency issues and portable state recovery.
Consistency issues are not solved at runtime, but rather at both compile and restart time. At com-
pile time, checkpoints are placed in safe points. At restart time, a negotiation between processes
decides the safe point from which to restart the application. Process synchronization required by
traditional coordinated checkpointing approaches is transferred to the restart operation. This ap-



proach greatly increases scalability, since communications are not necessary during a normal run,
and all processes are allowed to operate in a completely independent way.
Portable state recovery is achieved by means of both the recovery of stored data and the re-
execution of procedures with non-portable outcome. This re-execution also provides scope for
the checkpointing of applications linked to external libraries.
CPPC has been thoroughly tested to demonstrate the proper behavior of its features. It correctly
performed application restart for all the test cases, even using the same set of checkpoint files to
restart on binary incompatible machines, and different C/Fortran compilers and MPI implementa-
tions.
To our knowledge, CPPC is the only publicly available portable checkpointer for message-passing
applications. CPPC is an open-source project, available at http://cppc.des.udc.es. It
can be downloaded under GPL license.

Acknowledgment

This research was supported by the Ministry of Education and Science of Spain and FEDER
funds of the European Union (Project TIN-2004-07797-C02 and FPU grant AP-2004-2685) and
by the Galician Government (Projects PGIDIT04TIC105004PR and PGIDIT05PXIC10504PN).
We gratefully thank CESGA (Galician Supercomputing Center) for providing access to the HP
Superdome computer.

References

[1] A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic MPI programs on clusters of
workstations. In Proceedings of the 8th IEEE International Symposium on High Performance
Distributed Computing, pages 167–176, 1999.

[2] A. Bouteiller, F. Capello, T. Hérault, G. Krawezik, P. Lemarinier, and F. Magniette. MPICH-
V2: A fault tolerant MPI for volatile nodes based on pessimistic sender based message log-
ging. In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing (SC’03), 2003.

[3] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. C3: A system for automating
application-level checkpointing of MPI programs. In Proceedings of LCPC’03, pages 357–
373, 2003.

[4] K. M. Chandy and L. Lamport. Distributed snapshots: determining global states of dis-
tributed systems. ACM Transactions on Computer Systems, 3(1):63–75, 1985.

[5] E. N. Elnozahy and J. S. Plank. Checkpointing for peta-scale systems: A look into the future
of practical rollback-recovery. IEEE Transactions on Dependable and Secure Computing,
1(2):97–108, 2004.

[6] J. Gailly and M. Adler. ZLib Home Page. http://www.gzip.org/zlib/.



[7] P. González, T. F. Pena, and J. C. Cabaleiro. Dual BEM for crack growth analysis on
distributed-memory multiprocessors. Advances in Engineering Software, 31(12):921–927,
2000.

[8] J.-M. Hélary, R. H. B. Netzer, and M. Raynal. Consistency issues in distributed checkpoints.
IEEE Transactions on Software Engineering, 25(2):274–281, 1999.

[9] S.-I. Lee, T. A. Johnson, and R. Eigenmann. Cetus – an extensible compiler infrastructure
for source-to-source transformation. In Proceedings of the 16th International Workshop on
Languages and Compilers for Parallel Computing (LCPC’03), pages 539–553, 2003.

[10] S. Louca, N. Neophytou, A. Lachanas, and P. Evripidou. MPI-FT: Portable fault tolerance
scheme for MPI. Parallel Processing Letters, 10(4):371–382, 2000.

[11] M. J. Martı́n, D. E. Singh, J. C. Mouriño, F. F. Rivera, R. Doallo, and J. D. Bruguera. High
performance air pollution modeling for a power plant environment. Parallel Computing,
29(11–12):1763–1790, 2003.

[12] National Aeronautics and Space Administration. The NAS Parallel Benchmarks.
http://www.nas.nasa.gov/Software/NPB/.

[13] National Center for Supercomputing Applications. HDF-5: File Format Specification.
http://hdf.ncsa.uiuc.edu/HDF5/doc/.

[14] J. S. Plank, M. Beck, and G. Kingsley. Compiler-assisted memory exclusion for fast check-
pointing. IEEE Technical Committee on Operating Systems and Application Environments,
7(4):10–14, 1995.

[15] S. Rao, L. Alvisi, and H. Vin. Egida: An extensible toolkit for low-overhead fault toler-
ance. In Proceedings of the 29th International Symposium on Fault-Tolerant Computing
(FTCS’99), pages 48–55, 1999.

[16] G. Rodrı́guez, M. J. Martı́n, P. González, and J. Touriño. Controller/Precompiler for Portable
Checkpointing. IEICE Transactions on Information and Systems, E89-D(2):408–417, 2006.

[17] G. Stellner. Cocheck: Checkpointing and process migration for MPI. In Proceedings of the
10th International Parallel Processing Symposium (IPPS’96), pages 526–531, 1996.

[18] V. Strumpen. Portable and fault-tolerant software systems. IEEE Micro, 18(5):22–32, 1998.


