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Abstract- Large-scale computational science and en-
gineering parallel applications introduce the need for
techniques that ensure that not all computation done
is lost on machine failures. Application checkpoint-
ing has become a widely used approach to obtain
such guarantees. This paper presents CPPC (Con-
troller/Precompiler for Portable Checkpointing), an im-
plementation that illustrates the use of compile time
analysis, along with a runtime library, to obtain an effi-
cient, scalable and portable checkpointing tool. It allows
parallel processes to checkpoint independently, without
runtime coordination or message-logging. Consistency
is achieved at restart time by negotiating the restart
point. CPPC was designed to work with parallel MPI
programs, though it can be used with sequential ones,
and easily extended to parallel programs written us-
ing different message-passing libraries, due to its highly
modular design. Experimental results are shown using
CPPC with different test applications.

1. Introduction

Parallel computing evolution towards cluster
and Grid infrastructures has created new fault tol-
erance needs. As parallel machines increase their
number of processors, so does the failure rate of
the global system. This is not a problem while
the mean time to complete an application’s exe-
cution remains well under the mean time to fail-
ure (MTTF) of the underlying hardware, but that
is not always true on applications with long runs.
For instance, let the MTTF of a single node on a
Grid System be tnode. Assuming an application
uses n nodes of the Grid, and using an exponen-
tially distributed failure model, without fault tol-
erance, the probability of application termination
would be:

fn(t) = e
− n

tnode
·t

Where t should be replaced by the mean time to
complete (MTTC) of the application. Suppose a
Grid with an MTTF per node of 2 weeks, and that

an application was executed over 8 nodes of the
Grid with an MTTC of 2 days, then the resulting
probability of completion would be 0.31. There-
fore, users and programmers need a way to ensure
that not all computation done is lost on machine
failures.

Checkpointing has become a widely used tech-
nique to obtain such guarantees. It provides fault
tolerance by periodically saving the computation
state to stable storage, so that this state can be re-
stored in case of execution failure. A number of
solutions and techniques have been proposed [1],
each having its own pros and cons. There are
some significant drawbacks that are at least par-
tially present in all existing solutions, each one
tied to a remarkable property of general check-
pointing techniques:

Granularity: Checkpointing can be studied from
two different granularity levels, data segment
level and variable level. On data segment level
the entire application state is saved, recovering it
when necessary. This approach has a general ad-
vantage: its independence of the considered ap-
plication, since it is seen as a black box. But the
more state it stores the less efficient the technique
will be. Moreover, saving the application state en-
tirely leads to lack of portability, as a number of
non-portable structures will be saved along with
application data (as application stack or heap).

Generally speaking, not all the state is needed
when restarting an application, but there are cer-
tain parts that can be recovered based on a funda-
mental core of data. This leads to variable level
checkpointing, which saves only restart-relevant
state to stable storage. This approach is more effi-
cient than data segment level techniques, and po-
tentially generates portable files. The main draw-
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back is the need of application analysis to identify
the restart-relevant state, generally responsibility
of the user, which results in a lack of transparency.

Scalability: Distributed checkpointing protocols
are based on coordination or message-logging to
ensure the consistency of the application state on
recovery [2]. Both approaches reduce the scal-
ability of checkpointing protocols. Even if pro-
cesses log only received or sent messages, in-
creasing the number of processes will multiply
the number of flying messages, thus enlarging the
computation needed per process to be protocol-
compliant.

Portability: A state file is said to be portable [3]
if it can be used to restart the computation on a
different architecture (or OS) from that where the
file was generated on. This means that state files
should not contain hard machine-dependent state,
which should be recovered at restart time using
special protocols. Files saved using data segment
level techniques will never be portable, as they
store non-portable data, such as opaque MPI [4]
state. Note that, as architecture (or OS) changes,
so do MPI implementations, or even inter-process
communication mechanisms.

Transparency: This property is measured in
terms of user effort to implement a given solution.
Traditionally, data segment level approaches are
completely transparent to programmers, as they
do not need much information about applications
being treated. On the other hand, variable level
views have to get some meta-data about the appli-
cation in order to correctly operate, and they usu-
ally get it from the programmer. It seems to be
a thin line separating both granularity and trans-
parency levels of a given solution, but this line
is an imaginary one, born from state-of-the-art
trends. In fact, there are no limits for the infor-
mation that the user can supply to a data segment
level checkpointing tool, as there are not for the
transparency that can be achieved by a variable
level approach.

There are a significant number of decisions to
be made upon facing the task of implementing
a new checkpointing tool, all with advantages
and disadvantages. This paper introduces CPPC

(Controller/Precompiler for Portable Checkpoint-
ing), a checkpointing infrastructure that resolves
major issues in implementing scalable, efficient
and portable checkpointing mechanisms by using
a variable level, non-coordinated, non-logging,
portable checkpointing technique.

The structure of the paper is as follows. Section
2 gives an overview of CPPC’s design and used
techniques. Section 3 exposes CPPC’s checkpoint
operation mode. Section 4 presents the restart
protocol used to recover the application state from
a state file created during checkpoint operation.
In Section 5 the operations needed to comply
with both checkpoint operation and restart proto-
col constraints are shown. Fault tolerance is in-
serted into an example application using CPPC
precompiler. Experimental results using CPPC’s
implementation are shown in Section 6. Related
work is discussed in Section 7, and Section 8 con-
cludes the paper.

2. CPPC Overview

Checkpointing tools based on data segment
level techniques [5]-[8] usually have complex,
non-portable implementations to deal with recov-
ery of non-portable state. This makes restart im-
possible on different architectures. In fact, most
variable level approaches [9, 11] store pieces of
non-portable state. High performance computing
trends towards heterogeneous clusters and Grid
infrastructures make portability a desirable prop-
erty. CPPC works at variable level storing only
portable data, thus making possible to change the
underlying architecture by using portable file for-
mats, like HDF-5 [12]. Dumping format is fully
configurable using writing plugins, thus allowing
users to select (or develop) new ones.

Storing only portable data on state files has an
important drawback, though. At restart time, not
only variable data must be recovered, but also
non-portable state created in the original execu-
tion (like MPI communicators, virtual topologies
or derived data types). This introduces the need
for some kind of restart protocol, capable of re-
generating the original state that is not present on
stored state files. CPPC uses code re-execution
to achieve complete application state recovery. A
piece of code is defined as Required-Execution
Code (REC) if it must be re-executed at applica-
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tion restart time to ensure correct state recovery.
When checkpointing parallel applications, spe-

cial considerations regarding messages between
processes have to be taken. There are two situa-
tions that require actions to be performed in order
to achieve a correct restart:

• Process A sends message m to process B and
takes its local checkpoint. Process B takes its
local checkpoint before receiving m. If the
application is restarted from that checkpoint,
B will expect to receive m, but it will not be
re-sent. Such messages are called in the liter-
ature late, in-transit, in-flight or missing mes-
sages.

• Process A takes its local checkpoint and sends
message m to process B. B receives the mes-
sage and takes its local checkpoint. If the ap-
plication is restarted from that checkpoint, B
will not expect to receive m, but it will still
be re-sent. Such messages are called early,
orphan, inconsistent or ghost messages.

A global checkpoint is said to be transitless if
there are no in-transit messages when it is cre-
ated [13]. It is called consistent if there are no
ghost messages [14]. Traditional approaches use
some kind of process coordination to ensure con-
sistency, and message-logging techniques to solve
issues generated by in-transit messages.

CPPC avoids overhead caused by coordination
and message-logging by storing checkpoints at
code points where it is guaranteed that there are
no in-transit, nor ghost messages. Thus, generated
checkpoints are transitless and consistent, both
being preconditions for a checkpoint to be called
strongly consistent. To identify such code points,
which will be called safe points, CPPC relies on
inter-process message flow analysis. Safe points
can be easily found in well behaving SPMD
codes. Such codes typically consist of a main loop
which includes a communication phase. Mes-
sages between processes are typically sent and re-
ceived in the same iteration, so just placing the
checkpoint call before or after such a communi-
cation phase would suffice. Thus, strong con-
sistency is achieved by using compile time co-
ordination, rather than runtime one and message-
logging, avoiding execution overhead.

Both working at variable level and placing
checkpoint calls in safe points detected at compile

time help achieve an efficient operation. Work-
ing at variable level reduces checkpoint file sizes,
thus making state dump a light operation. Re-
moving the need for message-logging or process
coordination not only boosts scalability, but also
efficiency. Besides, CPPC offers other check-
pointing options, such as multithreaded dump-
ing [15] and file compression. A scheme based
on ZLib [16] has been developed, but other al-
gorithms can be included. This does not only
help saving disk space and network transfers (if
needed), but also can improve performance when
working with large datasets with high compres-
sion rates.

Using this approach, the user is responsible
for detecting variables that must be recovered
upon application restart (and thus must be stored
as part of the checkpoint file) as well as safe
points. RECs execution must be enforced using
flow-control mechanisms that ensure that restart-
relevant code is executed while disposable one is
skipped. To ease this operation, a precompiler has
been implemented so that users must only identify
RECs and mark them using compiler directives.
The precompiler is then responsible for inserting
flow-control code. The SUIF framework [17] was
used to implement the precompiler.

A general overview of CPPC’s design can be
seen in Figure 1. There are two different phases
when using CPPC: compile time and runtime. At
compile time, CPPC precompiler is used to trans-
form a parallel application with user-inserted di-
rectives into a fault-tolerant parallel application.
At runtime, the application will send petitions to
the CPPC controller. As one of our objectives was
to decouple CPPC controller from the specific
host programming language, a single C++ imple-
mentation of the controller was written, while in-
terfaces for different programming languages are
provided. These interfaces are responsible for
masking programming language features (such as
static/dynamic memory management or variable
typing) and forwarding petitions to the facade,
which is responsible for managing the state that
must be dumped when a checkpoint is reached.
Thus, petitions regarding state to be dumped are
fast, as they do not involve other controller layers.
When the application asks for a checkpoint file
to be created, the facade sends register informa-
tion to the checkpointing layer, that formats these
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Figure 1: CPPC framework design

data so that the writing layer is able to process
them. Every writing plugin must accept the same
data format, so that they are fully interchange-
able. When the writing layer receives a command
to generate a checkpoint file, it may interact with
the utility layer, where implementations of com-
mon algorithms are located (e.g. data compres-
sion or error detection codes generation). Finally,
the writing plugin generates the checkpoint file
containing the received data using its own format.

3. Checkpoint operation

CPPC has two operation modes: checkpoint
operation and restart operation. The first one
takes place when a normal execution is being run,
while the second one emerges when the applica-
tion must be restarted from a previously saved
checkpoint file. This section covers the main five
tasks that must be inserted into a normal execution
flow to achieve fault tolerance using CPPC.

Initialization: First, a number of structures must
be created in order for the controller to work
correctly (such as a configuration manager, or
the directories where CPPC will store checkpoint
data), and contextual information must be gath-

ered. Thus, an initialization function must be
called by every process upon starting the parallel
application.

Register: The main event in checkpoint opera-
tion is state dumping but, before this happens,
CPPC must be aware of which parts of the process
state must be stored, and which ones can be safely
ignored. As mentioned before, CPPC stores only
portable state, that is, user variables. Those to be
stored are marked to achieve correct state dump-
ing. In order to accomplish this, a register func-
tion, whose main goal is to provide such informa-
tion to the CPPC controller, is needed. This func-
tion receives the data shown in the leaves of the
checkpoint file hierarchy in Figure 2 and stores
them as a tuple. CPPC will mark this memory re-
gion as relevant for dumping in subsequent check-
points. The register function has other functional-
ities on restart operation covered in Section 4.

Unregister: It could happen that a memory re-
gion that was needed in previous execution points
is not required anymore. To avoid dumping these
“dead” variables CPPC provides an unregister
function.

Checkpoint: At this point, CPPC has been cor-
rectly initialized and a checkpoint has been
reached. All restart-needed memory regions are
now marked for dumping, so that the operation
can begin.

CPPC uses output plugins that are selected at
runtime. Data to be stored are structured and
passed to a writing plugin which will perform the
effective data writing, using its own format. Be-
sides, a writer must be able to read its generated
files and restore register state and data. Users are
allowed to implement new writing plugins that
can be attached to the controller without recompi-
lation. There is only one constraint in the format
of the files being generated: the first byte must
contain a unique identifier so that the CPPC con-
troller can select the correct plugin for reading the
file on restart operation. The input data hierarchy
for every writing plugin is the same. It is shown
in Figure 2. A checkpoint is composed of N sec-
tions, and a section contains M registers. Sections
are used so that different registers may have the
same identifier (variable name) in different sec-
tions. Currently, two writing plugins have been
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implemented: a binary one, which dumps data in
memory format thus allowing fast operation; and
an HDF-5-based one, which makes it possible to
move state files between machines in a heteroge-
neous cluster or Grid infrastructure.

Figure 2: Checkpoint data hierarchy

As said in Section 2, state dumping can be done
in a multithreaded way to improve performance.
CPPC controller makes a copy of the memory that
will be stored to avoid inconsistencies and then re-
turns control to the parallel application, creating
a new thread to handle checkpointing. Compres-
sion is also available, but only recommended to
store data efficiently or if the compression rate is
significantly high.

Shutdown: Finally, CPPC interface exposes a
function to safely shutdown the system, making
sure that checkpoints that are being stored con-
currently are completed before freeing memory,
and that working directories are left in a consis-
tent state.

As can be seen, in order to reduce checkpoint
overhead, thus enhancing efficiency, checkpoint
operation was intended to be remarkably simple.
As restart is not expected to be a common opera-
tion, complexity should be detached from check-
point operation and moved to restart operation.
The protocol used for recovery is exposed in the
next section.

4. Restart operation

The restart operation comes across as a three-
phase process. The first phase is a negotia-
tion, where inter-process communications are per-

formed so that an agreement about the restart
point is achieved. During this phase, available
checkpoint files are checked for errors, to ensure
that no failures occurred during checkpointing in
the original execution. No consistency issues are
relevant as state files have been stored in safe
points. The second phase consists of reading the
selected file and loading its contents into memory.
The third phase is the effective recovery of the ap-
plication state. CPPC’s approach is based on the
existence, on a given parallel application, of five
different REC types that build up the restart skele-
ton that must be re-executed. The first and second
phases of the restart process are done in the initial-
ization REC. The third one is distributed among
the remaining ones. The following sections de-
scribe the conditions that must be fulfilled at com-
pile time to remove consistency issues and ensure
proper negotiation of the restart point, the differ-
ent REC types and the flow control mechanisms
used to interconnect them.

4.1. Guaranteeing global consistency

The set of files that parallel processes select as
restart data must build up a strongly consistent
global state. One such state can be achieved if
all processes dump their data at the same point in
the code, and at the same point in the execution
(for example, if the checkpoint is into a loop all
processes must dump their state on the same loop
iteration). CPPC’s approach takes the following
steps to guarantee that the recovered global state
is strongly consistent:

• All processes execute the same number of
calls to the checkpointing function at the
same relative points. This does not mean that
checkpoints can not be into conditional struc-
tures, like ifs, but that if there is a checkpoint
in the then part then there must be another one
in the else part.

• Dumping frequency is not a function of time,
but of the number of calls made to the check-
point function. That is, a state file is generated
every N calls, being N user-defined.

If both conditions are fulfilled, then all pro-
cesses will dump their state at the same points of
the execution. Note that this does not mean that
processes are synchronized.
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If every state file is uniquely identified by a
number (being incremented on every call), then
the same identifier on different processes refers to
a state file created at the same relative execution
point, thus allowing processes to coherently argue
about valid restart positions.

4.2. REC types

The five types of REC are:

Initialization: First, the initialization function
must be called so that CPPC controller can ob-
tain information about the current execution and
initialize needed structures. Upon restart, pro-
cesses must search for state files created in the
past. Then, the negotiation is performed and the
selected file is read. Negotiation’s pseudo-code is
shown in Figure 3. This kind of REC will appear
only once in every application. It must be located
at the very beginning of the execution so that no
state-dependent operations are performed.

A = Available files, ordered by uni-
que file code

agreement ← false
While not agreement
N ← Newest correct checkpoint in A
If all processes propose N then
agreement ← true
Else
O ← Older restart point proposed
NO ← {x ∈ A / x is newer than O}
A ← A--NO
End If
End While

Delete files older than N

Figure 3: Pseudo-code of the negotiation about the restart
point

Memory recovery: User variables stored as
memory registers need to be recovered when
restarting the application in order to rebuild its
entire state. Memory will be recovered indepen-
dently from other processes, as data were dumped
in a distributed way. In order to avoid mem-
ory allocation problems, data can not be recov-
ered at once when executing CPPC’s initializa-
tion, but a more subtle way is employed: the reg-
ister function recovers data to its proper location.

It receives all the information needed to iden-
tify not only the original register, but also where
the memory is allocated in the current execution
(through the base address parameter). Pseudo-
code in restart operation is detailed in Figure 4.

M = Register’s base address
C = Contents of the register in the
checkpoint file
staticMem = Memory is static

If staticMem then
memcpy(M,C)
delete(C)
Else
M ← &C
End If

Add register using M as base address

Figure 4: Register function’s pseudo-code in restart opera-
tion mode

Unregister calls: As seen in Figure 4, register
state is recovered when restarting an application.
If a register was removed during the original exe-
cution, then it must be removed when restarting
the application. Thus, unregister function calls
that were executed in the original run must be re-
executed at restart time.

Non-portable state recovery: Besides user vari-
ables, non-portable state must be recovered (e.g.
MPI communicators). Mandatory execution
blocks are pieces of the original code that create
this non-portable state. They must be re-executed
upon restart in order to recover such state. This
kind of blocks can also be used to recover state
that is indeed portable, but that the programmer
decides to recalculate, probably because it en-
hances execution performance (e.g. generating
large datasets may be faster than reading them
from disk).

Checkpoints: Checkpoint function calls must be
re-executed so that CPPC can evaluate the execu-
tion state to check if restart is complete. If so, the
application must leave restart operation and enter
checkpoint operation mode. Note that restart may
only finish at checkpoint calls, as it is there where
the original execution’s state was dumped. There
are two premises that must be fulfilled in order to
consider restart finished:
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• All variables contained in the state file have
been recovered.

• The checkpoint is the same where the state
file was originally created.

If restart is finished, then the execution mode
changes to checkpoint operation by deactivating
conditional jumps (see Section 4.3).

4.3. Restart execution flow control

CPPC’s restart operation consists mainly in an
ordered execution of RECs. This means that the
execution flow must be able to jump from the end
of one REC to the beginning of the next one. To
accomplish this task, the precompiler inserts two
types of code blocks:

• Conditional jumps at REC end: These are
jumps that are only carried out when recov-
ery is taking place, not during checkpoint op-
eration. As jumps can not be done from one
procedure into another (this would eliminate
the context change thus creating memory in-
consistencies), they must be inserted into the
original application code.

• Jump labels at REC beginning: These la-
bels serve as jump destination for conditional
jumps (not inserted before the CPPC initial-
ization REC).

Together, these two constructs build up the
flow-control restart mechanism. The precompiler
also inserts jump labels before a call to a func-
tion containing RECs so that they are executed on
restart operation, as well as conditional jumps af-
ter the call.

5. CPPC Directives

A set of six directives is provided to fulfill the
requirements generated by the CPPC approach.
They are not a description in a specific program-
ming language, but a semantic one. Table 1
summarizes directive purposes for each operation
mode.

• cppc init: Used for marking the ini-
tialization point, where memory structures
needed by the CPPC controller are initialized.
It is also the beginning of the restart execution

flow, where an agreement is reached and the
selected checkpoint file is read into memory.

• cppc shutdown: For marking the CPPC
finalization point, freeing used memory and
ensuring that checkpoints being currently
stored are correctly finished.

• cppc register ( var1[size1],
... ): Accomplishes a double func-
tionality: on checkpoint operation updates
the register state, which will be dumped at
checkpoints. On restart operation it is the
point where memory recovery is done.

• cppc unregister ( var1, var2,
... ): For unregistering variables that are
not needed anymore. Execution on restart is
needed to achieve correct register state.

• cppc execute/end execute: For
marking mandatory execution blocks which
achieve non-portable state recovery, such as
calls to MPI functions that create communi-
cators (e.g. MPI Comm split()).

• cppc checkpoint: Points where the state
is dumped, or where it is checked whether
restart has finished or not, depending on the
operation mode.

Directive Checkpoint op. Restart op.
Initialization

Init Initialization Negotiation
Read checkpoint file

Shutdown
Achieve consistency
Free used memory Not used

Register Create new register
Recover data
Create new register

Unregister Delete existent register
Execute Not used Execute marked code
Checkpoint Dump state file Check restart state

Table 1: CPPC’s interface directives summary

5.1. A CPPC application example

C and Fortran 77 versions of CPPC interface
have been implemented to help reuse the same
controller implementation (see Figure 1). For il-
lustrative purposes, Figure 5 details the C code
needed to transform an application (matrix di-
agonalization) into a fault tolerant version using
CPPC. On checkpoint operation the MPI environ-
ment is initialized, then the CPPC controller; ma-
trix data are read; inter-process communication is
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started; matrix data are distributed and then regis-
tered by every process; next, the core computation
of the application begins (with checkpoints taken
every N iterations, being N user-defined); un-
needed data are unregistered; then another check-
point is taken and, finally, results are written and
CPPC shutdowns. Upon restart, the execution
flows as follows:

int main( int argsc, char **argsv ){

double * matrix;
int matrix size, i, niters;
char * matrixf;

MPI Init( &argsc, &argsv );
#pragma cppc init

/* Command-line parameters */
matrix size = atoi( args[1] );
matrixf = args[2];

/* Matrix data input */
matrix = mread( matrix size,
matrixf );

#pragma cppc execute
/* Inter-process communication
initialization */
MPI Comm split( ... );
...
#pragma cppc end execute

/* Matrix data distribution */
...

#pragma cppc register ( i, niters,
matrix[ matrix size ] )
for( i = 0; i < niters; i++ ) {
#pragma cppc checkpoint
/* Matrix diagonalization */
...
}

#pragma cppc unregister (i,niters)
#pragma cppc checkpoint
/* Diagonalized matrix output */
...

#pragma cppc shutdown
MPI Finalize();
}

Figure 5: Fault-tolerant matrix diagonalization through
CPPC directives

• Execution of the MPI initialization.

• Execution of the CPPC controller initializa-
tion. Processes agree about the restart file and
read the checkpoint file. The directive trans-
lation is:

CPPC Init( &argsc, &argsv );

/* Conditional jump to next REC */

if( CPPC Jump next() ) {
next jump = ( next jump + 1 ) %

labels count;

goto * jump labels[ jump index ];

}

The precompiler automatically inserts the
jump labels array (to store jump desti-
nation labels), the jump index integer (to
index the jump labels array), and the
labels count integer (which stores the
size of the jump labels array so that
jump index can be incremented coher-
ently).

CPPC Jump next() returns true if CPPC is
on restart operation mode, meaning that con-
ditional jumps must be taken. These jumps
are always translated the same way, so this
code will not be repeated below.

• Mandatory execution of the inter-process
communication initialization block:

CPPC MANDATORY BLOCK 1:

/* Inter-process communication

initialization */

...

/* Conditional jump to next REC */

...

• Execution of the variable data recovery block
(register directive). Note that loop index and
limits are registered so that they are preserved
through executions:
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CPPC REGISTER BLOCK 1:

CPPC Register( 0, &i, 1, CPPC INT,

‘‘i’’, CPPC STATIC);

CPPC Register( 0, &niters, 1,

CPPC INT, ‘‘niters’’,

CPPC STATIC );

CPPC Register( 0, &matrix size, 1,

CPPC INT, ‘‘matrix size’’,

CPPC STATIC );

matrix = CPPC Register( 0, matrix,

matrix size, CPPC DOUBLE,

‘‘matrix’’, CPPC DYNAMIC );

/* Conditional jump to next REC */

...

• Execution of the first checkpoint call:
CPPC CHECKPOINT 1:

CPPC Do checkpoint( 0 );

/* Conditional jump to next REC */

...

The checkpoint function tests the two con-
ditions to enter checkpoint operation seen in
Section 4.2. The first one (all state is recov-
ered) will always be true in this example, as
all register functions have been executed. If
the selected state file was generated at this
point in the original execution then restart is
over, and CPPC Jump next() will return
0 from now on. If it was generated at the
second checkpoint then the conditional jump
is taken and restart continues. Every check-
point call receives a parameter, automatically
generated by the precompiler, that serves as
unique identifier so that CPPC is able to dis-
tinguish between different checkpoint calls.

• Execution of the block that contains only vari-
able unregistration:
CPPC UNREGISTER BLOCK 1:

CPPC Unregister( &i );

CPPC Unregister( &niters );

/* Conditional jump to next REC */

...

Unregister calls must be executed at restart
time in order to correctly restore registers
state. If not done, then registers that had
been already removed in the original execu-
tion would remain active when restarting.

• Execution of the second checkpoint call.
Translation is similar to the first one, except

that the unique identifier passed to the func-
tion CPPC Do checkpoint() will be 1,
not 0. At this point the execution will enter
checkpoint operation, as the original state is
now completely restored.

6. Experimental results

The NAS Parallel Benchmarks (NPB) [18] were
used to test CPPC. Five of these applications have
been selected: BT (Block Tridiagonal), CG (Con-
jugate Gradient), LU (Lower-Upper Symmetric
Gauss-Seidel LU), MG (MultiGrid) and IS (In-
teger Sort), as they are a representative set be-
cause of their different state file sizes. Also, IS
was interesting because it is the only C applica-
tion in the NPB. Executions took place on a clus-
ter of four biprocessor Intel Xeon nodes, 1.8 Ghz,
1 GB of RAM, connected through a SCI network.
Size of the state files being generated, the over-
head for checkpoint operation and the restart time
were measured.

6.1. State file sizes

When using a non-coordinated, non-logging
checkpointing technique, it is clear that the over-
head introduced will only depend on checkpoint
sizes. Thus, the first parameter to be measured
is how the variable level approach affects check-
point file sizes. Results for the test applications
are shown in Figure 6, using the binary writer,
binary writer with ZLib compression and HDF-
5 writer. Variable level checkpointing achieves
very important size reductions on some applica-
tions when compared to segment level, like in BT
where it reaches 80%.

Note that the HDF-5 writer generates files ap-
proximately the same size as those generated by
the binary writer. HDF-5 library is configured
to dump data in memory format. Conversions, if
needed, will be done at restart time. Thus, CPPC-
generated HDF-5 files are much like the binary
ones, except that all data are tagged (to make con-
versions possible when restarting) and structured
in a different way. The reasons for delaying con-
versions until restart are that they may not even be
necessary, and that this improves performance of
checkpoint operation.
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Figure 6: Generated per-node file sizes

6.2. Checkpoint overhead

As said before, the performance obtained by
CPPC is tightly tied to the size of the files being
generated. The other factor that plays a key role in
dumping time is the algorithm being used. Figure
7 details dumping times.
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Figure 7: File generation overhead

Note that the HDF-5 writer shows better perfor-
mance than the binary one. There are two rea-
sons for this. First, no data conversion is being
made on checkpoint operation. And second, the
HDF-5 writer does not implement any error detec-
tion code scheme for complete files, while the bi-
nary writer includes CRC-32 (Cyclic Redundancy
Check, 32 bits).

It is clear that using compression greatly in-
creases dumping time. Thus, its use is only rec-
ommended if effective gains are going to be ob-
tained, for example, if there are problems with

disc quotas or very high compression rates.
To avoid the overhead introduced by file gener-

ation, multithreaded state dumping has been im-
plemented. Table 2 details the original execution
times (without checkpointing) and the overhead
introduced by the generation of a single check-
point file using the binary writer. Good results
are obtained with those applications with higher
runtimes. MG and IS have such a short exe-
cution that creating a state file generates a high
overhead (although this overhead is in the range
of 1-2 seconds). Note that checkpoint overheads
include, besides state dumping, the remaining
CPPC operations: initialization, variable registra-
tion/unregistration and finalization.

Original
runtime

Checkpt.
overhead

Overhead
percentage

BT 638.37 2.70 0.42%
CG 617.28 7.27 1.18%
LU 467.08 4.7 1.01%
MG 21.47 2.05 9.55%
IS 5.72 1.50 26.22%

Table 2: Multithreaded checkpoint overheads in seconds

A lot of useful information can be extracted
from these applications, even when their exe-
cution times are around minutes (making the
checkpointing period not acceptable). However,
these results can be extrapolated to infer the to-
tal checkpointing overhead in any given applica-
tion, known its execution time and generated file
sizes. Thus, if an application runs for 30 days, us-
ing CPPC with a checkpointing period of 1 day
and assuming checkpoint files of 2 GB per node
would only increase estimated execution time by
2 hours, which is rather an acceptable time (it rep-
resents an overhead of 0.27%).

6.3. Restart overhead

Execution overhead has been measured assum-
ing that there are no failures during the execution.
If this happened, restart time would play a funda-
mental role in total execution time. Restart times
for the previous applications have been measured
and split to its 3 fundamental parts: negotiation,
file reading and effective recovery. Results can be
seen in Figure 8. Negotiation time and file reading
time greatly depend on file sizes, as there is the
need to check them for errors using the previously
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generated CRC-32 code. Also, both depend on
the plugin that generated the file: using the ZLib
writer negotiation time is reduced (as the CRC-32
is performed over smaller files), but reading time
is increased (as it is necessary to decompress the
file); using the HDF-5 writer negotiation time al-
most vanishes (as no integrity tests are performed)
and reading time could increase (if data transfor-
mations are needed). Recovery time only depends
on the amount of state saved and the amount of
state recovered using code re-execution and repre-
sents a minor percentage of the total restart time.
As can be seen, restart times are rather low, mak-
ing restart overhead negligible except when deal-
ing with applications with extremely short runs,
such as MG or IS.

BT CG LU MG IS
0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5
Recovery

Read

Negotiation

T
im

e
 (

s)

Figure 8: Restart times using CPPC’s binary writer

7. Related work

There are currently available several solutions
that deal with checkpointing. The main difference
between all other implementations and CPPC is
portability, whether code portability or check-
point file portability.

PC/MPI [11] focuses on code portability. It is
implemented over a sequential checkpointer like
CKPT [19]. Hence, it works at segment level,
generating non-portable files. For global consis-
tency uses the same safe point approach as CPPC.

MPICH-GF [6] and MPICH-V2 [7] are im-
plemented as MPICH [20] drivers, thus enforc-
ing all machines to run a given MPI implemen-
tation. Both work at data segment level, thus
generating non-portable files. MPICH-GF uses
process coordination, while MPICH-V2 logs sent

messages. Both are non-scalable approaches to
achieve global consistency.

CLIP [5] is a Libckpt-based [21] implementa-
tion for Intel Paragon architectures. File portabil-
ity is a non-sense in this context. It also uses pro-
cess coordination to deal with global consistency,
flushing message buffers and storing them along
with the state file.

Dome [22] extensions achieve to perform
portable checkpointing [23], as they use the Dome
environment for data managing, which is natively
portable. This solution can only be used when
working with Dome programs. Processes may
checkpoint independently from others and in any
given point in the program without using global
consistency techniques, as communications in a
Dome program are implicit. This discards the
possibility of in-transit or ghost messages while
dumping data.

CoCheck [8] was developed for Condor sys-
tem [24]. It works at segment level, thus discard-
ing file portability. It uses process coordination
to achieve global consistency, thus being a non-
scalable approach.

C3 [9, 10] is a checkpoint compiler that works
at variable level, implemented over the MPI li-
brary. Thus, its code is independent of the MPI
implementation. It uses a newly developed pro-
tocol based on the Chandy-Lamport protocol [13]
to achieve global consistency. Scalability of this
protocol is under study. Portability is not one of
its goals and, although it does not store any in-
ternal MPI state, enforces data to be recovered on
the same virtual location than on the original exe-
cution to achieve pointer consistency, thus making
impossible architectural changes and file portabil-
ity.

8. Concluding remarks and future work

In this paper a new checkpointing infrastruc-
ture, CPPC, has been presented and evaluated.
CPPC resolves major issues in implementing scal-
able, efficient and portable checkpointing by us-
ing variable level, non-coordinated, non-logging,
portable approaches.

From a global view, CPPC’s most remarkable
property is the portability of the files being gen-
erated, as well as of its source code. This is an
interesting characteristic due to inherent hetero-
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geneity of Grid infrastructures. Dumping format
is fully configurable using writing plugins, being
possible to include the developments done by the
Grid and Recovery Group at the Global Grid Fo-
rum (Grid-CPR) [25]. The introduction of the pre-
compiler tool greatly reduces the programmer ef-
fort, as it removes the need to write tedious, me-
chanical code.

A related work section has been included. Un-
fortunately, a comparative performance analysis
between CPPC and other solutions has not been
possible due to lack of implementations available
on the web.

The drawback of the safe point approach is that
inter-process message flow must be analyzed for
every application. However, this is not a hard task
and, more importantly, it can be automatized. We
are currently working on techniques for automat-
ically or semi-automatically extracting informa-
tion about safe points, relevant variable analysis
and code blocks that must be re-executed upon
restart, in order to obtain a more transparent ap-
proach to checkpointing.
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